Descubren posible señal de vida en Venus
Un equipo internacional de astrónomos ha anunciado hoy el descubrimiento de una molécula poco común, la fosfina, en las nubes de Venus. En la Tierra, este gas sólo se fabrica de forma industrial o por microbios que prosperan en ambientes libres de oxígeno. Los astrónomos han especulado durante décadas con la posible existencia de microbios en las nubes altas de Venus, microbios que flotarían libres de la superficie abrasadora pero que necesitarían de una muy alta tolerancia a la acidez. La detección de fosfina podría apuntar a tal vida “aérea” extraterrestre.
“Cuando obtuvimos los primeros indicios de fosfina en el espectro de Venus, ¡fue un shock!”, afirma la responsable del equipo, Jane Greaves, de la Universidad de Cardiff (Reino Unido), quien vio por primera vez signos de fosfina en observaciones realizadas con el Telescopio James Clerk Maxwell (JCMT), operado por el Observatorio de Asia Oriental (East Asian Observatory), en Hawái. Confirmar su descubrimiento requería del uso de 45 de las antenas del conjunto ALMA (Atacama Large Millimeter/submillimeter Array), en Chile, un telescopio más sensible y del que ESO (Observatorio Europeo Austral) es socio. Ambas instalaciones observaron Venus a una longitud de onda de aproximadamente 1 milímetro, mucho más de lo que el ojo humano puede ver (solo los telescopios instalados a gran altitud pueden detectarlo de manera eficaz).
El equipo internacional, que incluye a investigadores de Reino Unido, Estados Unidos y Japón, estima que la fosfina existe en las nubes de Venus en una concentración muy pequeña, sólo una veintena de moléculas por cada mil millones. Tras sus observaciones, realizaron cálculos para ver si estas cantidades podían provenir de procesos naturales no biológicos en el planeta. Algunas ideas incluían luz solar, minerales lanzados hacia arriba desde la superficie, volcanes o relámpagos, pero ninguno de estos podría generar la cantidad suficiente. Se descubrió que estas fuentes no biológicas producían como máximo una diezmilésima parte de la cantidad de fosfina que veían los telescopios.
Según el equipo, para crear la cantidad observada de fosfina (que consiste en hidrógeno y fósforo) en Venus, los organismos terrestres sólo tendrían que trabajar, aproximadamente, al 10% de su productividad máxima. Se sabe que las bacterias de la tierra producen fosfina: toman fosfato de minerales o de material biológico, añaden hidrógeno y, en última instancia, expulsan la fosfina. Probablemente, cualquier organismo de Venus sería muy diferente a sus primos de la Tierra, pero también podrían ser la fuente de la fosfina detectada en la atmósfera.
Pese a que el descubrimiento de la fosfina en las nubes de Venus fue una sorpresa, los investigadores confían en su detección. “Para nuestro gran alivio, las condiciones eran buenas en ALMA para hacer observaciones de seguimiento, mientras que Venus estaba en un ángulo adecuado con respecto a la Tierra. Sin embargo, el procesamiento de los datos fue complicado, ya que ALMA no suele buscar efectos tan sutiles en objetos muy brillantes como Venus”, afirma Anita Richards, miembro del equipo del Centro Regional ALMA del Reino Unido y de la Universidad de Manchester. “Al final, descubrimos que ambos observatorios habían visto lo mismo: débil absorción en la longitud de onda correcta que se correspondía con gas fosfina, donde las moléculas son retroiluminadas por las nubes más cálidas que tienen debajo”, añade Greaves, quien dirigió el estudio publicado hoy en Nature Astronomy.
Otra miembro del equipo, Clara Sousa Silva, del Instituto Tecnológico de Massachusetts (EE.UU.), ha investigado la fosfina como un gas de “biofirma” de vida que no usa el oxígeno en planetas alrededor de otras estrellas, ya que la química normal no profundiza en este tema. Ella comenta: “¡Encontrar fosfina en Venus fue un regalo inesperado! El descubrimiento plantea muchas preguntas, por ejemplo, cómo podrían sobrevivir algunos organismos. En la Tierra, algunos microbios pueden hacer frente hasta a un 5% de ácido en su entorno, pero las nubes de Venus están hechas de ácido casi en su totalidad”.
El equipo cree que su descubrimiento es significativo porque pueden descartar muchas formas alternativas de hacer fosfina, pero reconocen que confirmar la presencia de “vida” necesita de mucho más trabajo. Aunque las nubes altas de Venus tienen agradables temperaturas de hasta 30 grados centígrados, son increíblemente ácidas (alrededor del 90% es ácido sulfúrico), lo que plantea problemas importantes para cualquier microbio que intente sobrevivir en ese entorno.
Leonardo Testi, astrónomo de ESO y Director de Operaciones Europeas de ALMA, que no participó en el nuevo estudio, declara que “La producción no biológica de fosfina en Venus está excluida por nuestra comprensión actual de la química de la fosfina en las atmósferas de los planetas rocosos. Confirmar la existencia de vida en la atmósfera de Venus sería un gran avance para la astrobiología; por lo tanto, es esencial dar continuidad a este emocionante resultado con estudios teóricos y observacionales con el fin de excluir la posibilidad de que la fosfina en planetas rocosos también pueda tener un origen químico diferente al de la Tierra”.
Más observaciones de Venus y de planetas rocosos fuera de nuestro Sistema Solar, incluso con el próximo Telescopio Extremadamente Grande de ESO, pueden ayudar a recopilar pistas sobre cómo puede originarse en ellos la fosfina y contribuir a la búsqueda de signos de vida más allá de la Tierra.
Este trabajo de investigación se ha publicado en el artículo científico “Phosphine Gas in the Cloud Decks of Venus” en la revista Nature Astronomy.
El equipo está formado por Jane S. Greaves (Escuela de Física & Astronomía, Universidad de Cardiff, Reino Unido [Cardiff]); Anita M. S. Richards (Centro de Astrofísica Jodrell Bank, La Universidad de Manchester, RU); William Bains (Departamento de estudios de la Tierra, Atmósfera y Ciencias Planetarias, Instituto Tecnológico de Massachusetts, EE.UU. [MIT]); Paul Rimmer (Departamento de ciencias de la Tierra y Centro Cavendish de Astrofísica, Universidad de Cambridge y Laboratorio MRC de Biología Molecular, Cambridge, RU); Hideo Sagawa (Departamento de Astrofísica y Ciencias Atmosféricas, Universidad Kyoto Sangyo, Japón); David L. Clements (Departamento de Física, Imperial College de Londres, RU [Imperial]); Sara Seager (MIT); Janusz J. Petkowski (MIT); Clara Sousa-Silva (MIT); Sukrit Ranjan (MIT); Emily Drabek-Maunder (Cardiff y Real Observatorio de Greenwich, Londres, RU); Helen J. Fraser (Escuela de Ciencias Físicas, La Universidad Abierta, Milton Keynes, RU); Annabel Cartwright (Cardiff); Ingo Mueller-Wodarg (Imperial); Zhuchang Zhan (MIT); Per Friberg (EAO/JCMT); Iain Coulson (EAO/JCMT); E’lisa Lee (EAO/JCMT) y Jim Hoge (EAO/JCMT).